熟悉规则:首先,你需要熟悉微乐麻将的游戏规则 ,
包括如何和牌、胡牌 、、碰、等。只有了解了规则,才能更好地制定策略 。 克制下家:在麻将桌上,克制下家是一个重要的策略。作为上家 ,你可以通过控制打出的牌来影响下家的牌局,从而增加自己赢牌的机会。 灵活应变:在麻将比赛中,情况会不断发生变化 。你需要根据手中的牌和牌桌上的情况来灵活调整策略。比如 ,当手中的牌型不好时,可以考虑改变打法,选择更容易和牌的方式。 记牌和算牌:记牌和算牌是麻将高手的必备技能 。通过记住已经打出的牌和剩余的牌 ,你可以更好地接下来的牌局走向,从而做出更明智的决策。 保持冷静:在麻将比赛中,保持冷静和理智非常重要。不要因为一时的胜负而影响情绪,导致做出错误的决策 。要时刻保持清醒的头脑 ,分析牌局,做出佳的选择。
通过添加客服微信
请注意,虽然微乐麻将自建房胜负规律策略可以提高你的赢牌机会 ,但麻将仍然是一种博弈游戏,存在一定的运气成分。因此,即使你采用了这些策略 ,也不能保证每次都能胜牌。重要的是享受游戏过程,保持积极的心态 。
1.99%防封号效果,但本店保证不被封号2.此款软件使用过程中,放在后台,既有效果3.软件使用中,软件岀现退岀后台,重新点击启动运行4.遇到以下情况:游/戏漏闹洞修补 、服务器维护故障、等原因,导致后期软件无法使用的,请立即联系客服修复5.本店软件售出前,已全部检测能正常安装和使用.
太阳系的领域包括太阳,4颗像地球的内行星 ,由许多小岩石组成的小行星带,4颗充满气体的巨大外行星,充满冰冻小岩石 ,被称为柯伊伯带的第二个小天体区。在柯伊伯带之外还有黄道离散盘面和太阳圈,和依然属于假设的奥尔特云。
依照至太阳的距离,行星序是水星、金星 、地球、火星、木星 、土星、天王星、和海王星,8颗中的6颗有天然的卫星环绕着 ,这些星习惯上因为地球的卫星被称为月球而都被视为月球 。在外侧的行星都有由尘埃和许多小颗粒构成的行星环环绕着,而除了地球之外,肉眼可见的行星以五行为名 ,在西方则全都以希腊和罗马神话故事中的神仙为名。三颗矮行星是冥王星,柯伊伯带内最大的天体之一,谷神星 ,小行星带内最大的天体,和属于黄道离散天体的阋神星。
概述和轨道
太阳系内天体的轨道太阳系的主角是位居中心的太阳,它是一颗光谱分类为G2V的主序星 ,拥有太阳系内已知质量的99.86%,并以引力主宰著太阳系 。木星和土星,太阳系内最大的两颗行星 ,又占了剩余质量的90%以上,目前仍属于假说的奥尔特云,还不知道会占有多少百分比的质量。
太阳系内主要天体的轨道,都在地球绕太阳公转的轨道平面(黄道)的附近。行星都非常靠近黄道 ,而彗星和柯伊伯带天体,通常都有比较明显的倾斜角度 。
由北方向下鸟瞰太阳系,所有的行星和绝大部分的其他天体 ,都以逆时针(右旋)方向绕着太阳公转。有些例外的,像是哈雷彗星。
环绕着太阳运动的天体都遵守开普勒行星运动定律,轨道都以太阳为椭圆的一个焦点 ,并且越靠近太阳时的速度越快 。行星的轨道接近圆型,但许多彗星、小行星和柯伊伯带天体的轨道则是高度椭圆的。
在这么辽阔的空间中,有许多方法可以表示出太阳系中每个轨道的距离。在实际上 ,距离太阳越远的行星或环带,与前一个的距离就会更远,而只有少数的例外。例如 ,金星在水星之外约0.33天文单位的距离上,而土星与木星的距离是4.3天文单位,海王星又在天王星之外10.5天文单位 。曾有些关系式企图解释这些轨道距离变化间的交互作用,但这样的理论从未获得证实。
形成和演化
艺术家笔下的原行星盘
太阳系的形成据信应该是依据星云假说 ,最早是在1755年由康德和1796年由拉普拉斯各自独立提出的。这个理论认为太阳系是在46亿年前在一个巨大的分子云的塌缩中形成的 。这个星云原本有数光年的大小,并且同时诞生了数颗恒星。研究古老的陨石追溯到的元素显示,只有超新星爆炸的心脏部分才能产生这些元素 ,所以包含太阳的星团必然在超新星残骸的附近。可能是来自超新星爆炸的震波使邻近太阳附近的星云密度增高,使得重力得以克服内部气体的膨胀压力造成塌缩,因而触发了太阳的诞生 。
被认定为原太阳星云的地区就是日后将形成太阳系的地区 ,直径估计在7,000至20,000天文单位,而质量仅比太阳多一点(多0.1至0.001太阳质量)。当星云开始塌缩时,角动量守恒定律使它的转速加快 ,内部原子相互碰撞的频率增加。其中心区域集中了大部分的质量,温度也比周围的圆盘更热 。当重力 、气体压力、磁场和自转作用在收缩的星云上时,它开始变得扁平成为旋转的原行星盘 ,而直径大约200天文单位,并且在中心有一个热且稠密的原恒星。
对年轻的金牛T星的研究,相信质量与预熔合阶段发展的太阳非常相似,显示在形成阶段经常都会有原行星物质的圆盘伴随着。这些圆盘可以延伸至数百天文单位 ,并且最热的部分可以达到数千K的高温 。
一亿年后,在塌缩的星云中心,压力和密度将大到足以使原始太阳的氢开始热融合 ,这会一直增加直到流体静力平衡,使热能足以抵抗重力的收缩能。这时太阳才成为一颗真正的恒星。
相信经由吸积的作用,各种各样的行星将从云气(太阳星云)中剩余的气体和尘埃中诞生:
·当尘粒的颗粒还在环绕中心的原恒星时 ,行星就已经开始成长;
·然后经由直接的接触,聚集成1至10公里直径的丛集;
·接着经由碰撞形成更大的个体,成为直径大约5公里的星子;
·在未来得数百万年中 ,经由进一步的碰撞以每年15厘米的的速度继续成长。
在太阳系的内侧,因为过度的温暖使水和甲烷这种易挥发的分子不能凝聚,因此形成的星子相对的就比较小(仅占有圆盘质量的0.6%) ,并且主要的成分是熔点较高的硅酸盐和金属等化合物 。这些石质的天体最后就成为类地行星。再远一点的星子,受到木星引力的影响,不能凝聚在一起成为原行星,而成为现在所见到的小行星带。
在更远的距离上 ,在冻结线之外,易挥发的物质也能冻结成固体,就形成了木星和土星这些巨大的气体巨星 。天王星和海王星获得的材料较少 ,并且因为核心被认为主要是冰(氢化物),因此被称为冰巨星。
一旦年轻的太阳开始产生能量,太阳风会将原行星盘中的物质吹入行星际空间 ,从而结束行星的成长。年轻的金牛座T星的恒星风就比处于稳定阶段的较老的恒星强得多 。
根据天文学家的推测,目前的太阳系会维持直到太阳离开主序。由于太阳是利用其内部的氢作为燃料,为了能够利用剩余的燃料 ,太阳会变得越来越热,于是燃烧的速度也越来越快。这就导致太阳不断变亮,变亮速度大约为每11亿年增亮10% 。
从现在起再过大约76亿年 ,太阳的内核将会热得足以使外层氢发生融合,这会导致太阳膨胀到现在半径的260倍,变为一个红巨星。此时,由于体积与表面积的扩大 ,太阳的总光度增加,但表面温度下降,单位面积的光度变暗。
随后 ,太阳的外层被逐渐抛离,最后裸露出核心成为一颗白矮星,一个极为致密的天体 ,只有地球的大小却有着原来太阳一半的质量 。
[编辑本段]结构和组成
太阳系是由受太阳引力约束的天体组成的系统是宇宙中的一个小天体系统,
太阳系的结构可以大概地分为五部分:
太阳
太阳是太阳系的母星,也是最主要和最重要的成员。它有足够的质量让内部的压力与密度足以抑制和承受核融合产生的巨大能量 ,并以辐射的型式,例如可见光,让能量稳定的进入太空。太阳在赫罗图上的位置
太阳在分类上是一颗中等大小的黄矮星 ,不过这样的名称很容易让人误会,其实在我们的星系中,太阳是相当大与明亮的。恒星是依据赫罗图的表面温度与亮度对应关系来分类的 。通常,温度高的恒星也会比较明亮 ,而遵循此一规律的恒星都会位在所谓的主序带上,太阳就在这个带子的中央。但是,但是比太阳大且亮的星并不多 ,而比较暗淡和低温的恒星则很多。
太阳在恒星演化的阶段正处于壮年期,尚未用尽在核心进行核融合的氢 。太阳的亮度仍会与日俱增,早期的亮度只是现在的75%。
计算太阳内部氢与氦的比例 ,认为太阳已经完成生命周期的一半,在大约50亿年后,太阳将离开主序带 ,并变得更大与更加明亮,但表面温度却降低的红巨星,届时它的亮度将是目前的数千倍。
太阳是在宇宙演化后期才诞生的第一星族恒星 ,它比第二星族的恒星拥有更多的比氢和氦重的金属(这是天文学的说法:原子序数大于氦的都是金属 。)。比氢和氦重的元素是在恒星的核心形成的,必须经由超新星爆炸才能释入宇宙的空间内。换言之,第一代恒星死亡之后宇宙中才有这些重元素 。最老的恒星只有少量的金属,后来诞生的才有较多的金属。高金属含量被认为是太阳能发展出行星系统的关键 ,因为行星是由累积的金属物质形成的。
行星际物质
除了光,太阳也不断的放射出电子流(等离子),也就是所谓的太阳风 。这条微粒子流的速度为每小时150万公里 ,在太阳系内创造出稀薄的大气层(太阳圈),范围至少达到100天文单位(日球层顶),也就是我们所认知的行星际物质。 太阳的黑子周期(11年)和频繁的闪焰、日冕物质抛射在太阳圈内造成的干扰 ,产生了太空气候。伴随太阳自转而转动的磁场在行星际物质中所产生的太阳圈电流片,是太阳系内最大的结构。
地球的磁场从与太阳风的互动中保护著地球大气层 。水星和金星则没有磁场,太阳风使它们的大气层逐渐流失至太空中。 太阳风和地球磁场交互作用产生的极光 ,可以在接近地球的磁极(如南极与北极)的附近看见。
宇宙线是来自太阳系外的,太阳圈屏障著太阳系,行星的磁场也为行星自身提供了一些保护 。宇宙线在星际物质内的密度和太阳磁场周期的强度变动有关 ,因此宇宙线在太阳系内的变动幅度究竟是多少,仍然是未知的。
行星际物质至少在在两个盘状区域内聚集成宇宙尘。第一个区域是黄道尘云,位于内太阳系,并且是黄道光的起因 。它们可能是小行星带内的天体和行星相互撞击所产生的。第二个区域大约伸展在10-40天文单位的范围内 ,可能是柯伊伯带内的天体在相似的互相撞击下产生的。
内太阳系
内太阳系在传统上是类地行星和小行星带区域的名称,主要是由硅酸盐和金属组成的 。这个区域挤在靠近太阳的范围内,半径还比木星与土星之间的距离还短。
内行星所有的内行星
四颗内行星或是类地行星的特点是高密度 、由岩石构成、只有少量或没有卫星 ,也没有环系统。它们由高熔点的矿物,像是硅酸盐类的矿物,组成表面固体的地壳和半流质的地幔 ,以及由铁、镍构成的金属核心所组成 。四颗中的三颗(金星 、地球、和火星)有实质的大气层,全部都有撞击坑和地质构造的表面特征(地堑和火山等)。内行星容易和比地球更接近太阳的内侧行星(水星和金星)混淆。行星运行在一个平面,朝着一个方向
水星
水星(Mercury)(0.4 天文单位)是最靠近太阳 ,也是最小的行星(0.055地球质量)。它没有天然的卫星,仅知的地质特征除了撞击坑外,只有大概是在早期历史与收缩期间产生的皱折山脊 。 水星 ,包括被太阳风轰击出的气体原子,只有微不足道的大气。目前尚无法解释相对来说相当巨大的铁质核心和薄薄的地幔。假说包括巨大的冲击剥离了它的外壳,还有年轻时期的太阳能抑制了外壳的增长 。
金星
金星 (Venus)(0.7 天文单位)的体积尺寸与地球相似(0.86地球质量),也和地球一样有厚厚的硅酸盐地幔包围着核心 ,还有浓厚的大气层和内部地质活动的证据。但是,它的大气密度比地球高90倍而且非常干燥,也没有天然的卫星。它是颗炙热的行星 ,表面的温度超过400°C,很可能是大气层中有大量的温室气体造成的 。没有明确的证据显示金星的地质活动仍在进行中,但是没有磁场保护的大气应该会被耗尽 ,因此认为金星的大气是经由火山的爆发获得补充。
地球
地球(Earth)(1 天文单位)是内行星中最大且密度最高的,也是维一地质活动仍在持续进行中并拥有生命的行星。它也拥有类地行星中独一无二的水圈和被观察到的板块结构 。地球的大气也于其他的行星完全不同,被存活在这儿的生物改造成含有21%的自由氧气。它只有一颗卫星 ,即月球;月球也是类地行星中唯一的大卫星。地球公转(太阳)一圈约365天,自转一圈约1天 。(太阳并不是总是直射赤道,因为地球围绕太阳旋转时 ,稍稍有些倾斜。)
火星
火星(Mars)(1.5 天文单位)比地球和金星小(0.17地球质量),只有以二氧化碳为主的稀薄大气,它的表面,例如奥林匹斯山有密集与巨大的火山 ,水手号峡谷有深邃的地堑,显示不久前仍有剧烈的地质活动。火星有两颗天然的小卫星,戴摩斯和福伯斯 ,可能是被捕获的小行星。
小行星带
小行星的主带和特洛伊小行星 小行星是太阳系小天体中最主要的成员,主要由岩石与不易挥发的物质组成 。
主要的小行星带位于火星和木星轨道之间,距离太阳2.3至3.3 天文单位 ,它们被认为是在太阳系形成的过程中,受到木星引力扰动而未能聚合的残余物质。
小行星的尺度从大至数百公里、小至微米的都有。除了最大的谷神星之外,所有的小行星都被归类为太阳系小天体 ,但是有几颗小行星,像是灶神星 、健神星,如果能被证实已经达到流体静力平衡的状态 ,可能会被重分类为矮行星 。
小行星带拥有数万颗,可能多达数百万颗,直径在一公里以上的小天体。尽管如此,小行星带的总质量仍然不可能达到地球质量的千分之一。小行星主带的成员依然是稀稀落落的 ,所以至今还没有太空船在穿越时发生意外 。
直径在10至10-4 米的小天体称为流星体。
谷神星
谷神星 (Ceres)(2.77 天文单位)是主带中最大的天体,也是主带中唯一的矮行星。它的直径接近1000公里,因此自身的引力已足以使它成为球体 。它在19世纪初被发现时 ,被认为是一颗行星,在1850年代因为有更多的小天体被发现才重新分类为小行星;在2006年,又再度重分类为矮行星。
小行星族
在主带中的小行星可以依据轨道元素划分成几个小行星群和小行星族。小行星卫星是围绕着较大的小行星运转的小天体 ,它们的认定不如绕着行星的卫星那样明确,因为有些卫星几乎和被绕的母体一样大 。
在主带中也有彗星,它们可能是地球上水的主要来源。
特洛依小行星的位置在木星的 L4或L5点(在行星轨道前方和后方的不稳定引力平衡点) ,不过"特洛依"这个名称也被用在其他行星或卫星轨道上位于拉格朗日点上的小天体。 希耳达族是轨道周期与木星2:3共振的小行星族,当木星绕太阳公转二圈时,这群小行星会绕太阳公转三圈。
内太阳系也包含许多“淘气 ”的小行星与尘粒 ,其中有许多都会穿越内行星的轨道 。
中太阳系
太阳系的中部地区是气体巨星和它们有如行星大小尺度卫星的家,许多短周期彗星,包括半人马群也在这个区域内。此区没有传统的名称,偶尔也会被归入"外太阳系" ,虽然外太阳系通常是指海王星以外的区域。在这一区域的固体,主要的成分是"冰"(水、氨和甲烷),不同于以岩石为主的内太阳系 。
外行星
所有的外行星 在外侧的四颗行星 ,也称为类木行星,囊括了环绕太阳99%的已知质量。木星和土星的大气层都拥有大量的氢和氦,天王星和海王星的大气层则有较多的“冰” ,像是水、氨和甲烷。有些天文学家认为它们该另成一类,称为“天王星族”或是“冰巨星 ” 。这四颗气体巨星都有行星环,但是只有土星的环可以轻松的从地球上观察。“外行星”这个名称容易与“外侧行星”混淆 ,后者实际是指在地球轨道外面的行星,除了外行星外还有火星。
木星
木星(Jupiter)(5.2 天文单位),主要由氢和氦组成 ,质量是地球的318倍,也是其他行星质量总合的2.5倍 。木星的丰沛内热在它的大气层造成一些近似永久性的特征,例如云带和大红斑。木星已经被发现的卫星有63颗,最大的四颗 ,甘尼米德 、卡利斯多、埃欧、和欧罗巴,显示出类似类地行星的特征,像是火山作用和内部的热量。甘尼米德比水星还要大 ,是太阳系内最大的卫星 。
土星
土星(Saturn)(9.5 天文单位),因为有明显的环系统而著名,它与木星非常相似 ,例如大气层的结构。土星不是很大,质量只有地球的95倍,它有60颗已知的卫星 ,泰坦和恩塞拉都斯,拥有巨大的冰火山,显示出地质活动的标志。泰坦比水星大 ,而且是太阳系中唯一实际拥有大气层的卫星。
天王星
天王星(Uranus)(19.6 天文单位),是最轻的外行星,质量是地球的14倍 。它的自转轴对黄道倾斜达到90度,因此是横躺着绕着太阳公转 ,在行星中非常独特。在气体巨星中,它的核心温度最低,只辐射非常少的热量进入太空中。天王星已知的卫星有27颗 ,最大的几颗是泰坦尼亚、欧贝隆 、乌姆柏里厄尔、艾瑞尔、和米兰达 。
海王星
海王星(Neptune)(30 天文单位)虽然看起来比天王星小,但密度较高使质量仍有地球的17倍。他虽然辐射出较多的热量,但远不及木星和土星多。海王星已知有13颗卫星 ,最大的崔顿仍有活跃的地质活动,有着喷发液态氮的间歇泉,它也是太阳系内唯一逆行的大卫星 。在海王星的轨道上有一些1:1轨道共振的小行星 ,组成海王星特洛伊群。
彗星
彗星归属于太阳系小天体,通常直径只有几公里,主要由具挥发性的冰组成。 它们的轨道具有高离心率 ,近日点一般都在内行星轨道的内侧,而远日点在冥王星之外 。当一颗彗星进入内太阳系后,与太阳的接近会导致她冰冷表面的物质升华和电离,产生彗发和拖曳出由气体和尘粒组成 、肉眼就可以看见的彗尾。
短周期彗星是轨道周期短于200年的彗星 ,长周期彗星的轨周期可以长达数千年。短周期彗星,像是哈雷彗星,被认为是来自柯伊伯带;长周期彗星 ,像海尔·波普彗星,则被认为起源于奥尔特云 。有许多群的彗星,像是克鲁兹族彗星 ,可能源自一个崩溃的母体。有些彗星有着双曲线轨道,则可能来自太阳系外,但要精确的测量这些轨道是很困难的。 挥发性物质被太阳的热驱散后的彗星经常会被归类为小行星。
半人马群
半人马群是散布在9至30 天文单位的范围内 ,也就是轨道在木星和海王星之间,类似彗星以冰为主的天体 。半人马群已知的最大天体是10199 Chariklo,直径在200至250 公里。第一个被发现的是2060 Chiron ,因为在接近太阳时如同彗星般的产生彗发,目前已经被归类为彗星。有些天文学家将半人马族归类为柯伊伯带内部的离散天体,而视为是外部离散盘的延续 。
外海王星区
在海王星之外的区域,通常称为外太阳系或是外海王星区 ,仍然是未被探测的广大空间。这片区域似乎是太阳系小天体的世界(最大的直径不到地球的五分之一,质量则远小于月球),主要由岩石和冰组成。
柯伊伯带
柯伊伯带 ,最初的形式,被认为是由与小行星大小相似,但主要是由冰组成的碎片与残骸构成的环带 ,扩散在距离太阳30至50 天文单位之处 。这个区域被认为是短周期彗星——像是哈雷彗星——的来源。它主要由太阳系小天体组成,但是许多柯伊伯带中最大的天体,例如创神星、伐楼拿、2003 EL61 、2005 FY9和厄耳枯斯等 ,可能都会被归类为矮行星。估计柯伊伯带内直径大于50 公里的天体会超过100,000颗,但总质量可能只有地球质量的十分之一甚至只有百分之一 。许多柯伊伯带的天体都有两颗以上的卫星,而且多数的轨道都不在黄道平面上。
柯伊伯带大致上可以分成共振带和传统的带两部分 ,共振带是由与海王星轨道有共振关系的天体组成的(当海王星公转太阳三圈就绕太阳二圈,或海王星公转两圈时只绕一圈),其实海王星本身也算是共振带中的一员。传统的成员则是不与海王星共振,散布在39.4至47.7 天文单位范围内的天体 。传统的柯伊伯带天体以最初被发现的三颗之一的1992 QB1为名 ,被分类为类QB1天体。
冥王星和卡戎
冥王星和已知的三颗卫星 冥王星(Pluto)(平均距离39 天文单位)是一颗矮行星,也是柯伊伯带内已知的最大天体之一。当它在1930年被发现后被认为是第九颗行星,直到2006年才重分类为矮行星。冥王星的轨道对黄道面倾斜17度 ,与太阳的距离在近日点时是29.7天文单位(在海王星轨道的内侧),远日点时则达到49.5天文单位 。
目前还不能确定卡戎(Charon),冥王星的卫星 ,是否应被归类为目前认为的卫星还是属于矮行星,因为冥王星和卡戎互绕轨道的质心不在任何一者的表面之下,形成了冥王星-卡戎双星系统。另外两颗很小的卫星 ,尼克斯(Nix)与许德拉(Hydra)则绕着冥王星和卡戎公转。
冥王星在共振带上,与海王星有着3:2的共振(冥王星绕太阳公转二圈时,海王星公转三圈) 。柯伊伯带中有着这种轨道的天体统称为类冥天体。
离散盘
离散盘与柯伊伯带是重叠的 ,但是向外延伸至更远的空间。离散盘内的天体应该是在太阳系形成的早期过程中,因为海王星向外迁徙造成的引力扰动才被从柯伊伯带抛入反覆不定的轨道中 。多数黄道离散天体的近日点都在柯伊伯带内,但远日点可以远至150 天文单位;轨道对黄道面也有很大的倾斜角度,甚至有垂直于黄道面的。有些天文学家认为黄道离散天体应该是柯伊伯带的另一部分 ,并且应该称为"柯伊伯带离散天体"。
此外,关于类似太阳系的天体系统的研究的另一个目的是探索其他星球上是否也存在着生命 。
太阳系是由受太阳引力约束的天体组成的系统,它的最大范围约可延伸到1光年以外。太阳系的主要成员有:太阳(恒星)、九大行星(包括地球)、无数小行星 、众多卫星(包括月亮) ,还有彗星、流星体以及大量尘埃物质和稀薄的气态物质.在太阳系中,太阳的质量占太阳系总质量的99.8%,其它天体的总和不到有太阳的0.2%。太阳是中心天体 ,它的引力控制着整个太阳系,使其它天体绕太阳公转,太阳系中的九大行星(水星、金星 、地球、火星、木星、土星 、天王星、海王星、冥王星)都在接近同一平面的近圆轨道上 ,朝同一方向绕太阳公转 。
距离
(AU)
半径
(地球)
质量
(地球)
轨道倾角
(度)
轨道
偏心率
倾斜度
密度
(g/cm3)
太阳 0 109 332,800 --- --- --- 1.410
水星 0.39 0.38 0.05 7 0.2056 0.1° 5.43
金星 0.72 0.95 0.89 3.394 0.0068 177.4° 5.25
地球 1.0 1.00 1.00 0.000 0.0167 23.45° 5.52
火星 1.5 0.53 0.11 1.850 0.0934 25.19° 3.95
木星 5.2 11.0 318 1.308 0.0483 3.12° 1.33
土星 9.5 9.5 95 2.488 0.0560 26.73° 0.69
天王星 19.2 4.0 17 0.774 0.0461 97.86° 1.29
海王星 30.1 3.9 17 1.774 0.0097 29.56° 1.64
冥王星 39.5 0.18 0.002 17.15 0.2482 119.6° 2.03
太阳系简介
(Solar System)就是我们现在所在的恒星系统。由太阳 、八颗行星(原先有九大行星,因为冥王星被剔除为矮行星)、66颗卫星(原有67颗,冥王星的卫星被剔除)以及无数的小行星、彗星及陨星组成的。行星由太阳起往外的顺序是:水星(Mercury) 、金星(Venus)、地球(Earth)、火星(Mars) 、木星(Jupiter)、土星(Saturn)、天王(Uranus) 、海王星(Neptune)。离太阳较近的水星、金星、地球及火星称为类地行星(terrestrial planets) 。宇宙飞船对它们都进行了探测 ,还曾在火星与金星上着陆,获得了重要成果。它们的共同特征是密度大(>3.0克/立方厘米),体积小,自转慢 ,卫星少,内部成分主要为硅酸盐(silicate),具有固体外壳。离太阳较远的木星、土星 、天王星、海王星称为类木行星(jovian planets) 。它们都有很厚的大气圈 ,其表面特征很难了解,一般推断,它们都具有与类地行星相似的固体内核。在火星与木星之间有1000000个以上的小行星(asteroid)(即由岩石组成的不规则的小星体)。推测它们可能是由位置界于火星与木星之间的某一颗行星碎裂而成的 ,或者是一些未能聚积成为统一行星的石质碎块 。陨星存在于行星之间,成分是石质或者铁质。
这些行星都以太阳为中心以椭圆轨道公转,虽然除了水星的十分接近于圆 ,行星轨道中或多或少在同一平面内(称为黄道面并以地球公转轨道面为基准)。黄道面与太阳赤道仅有7度的倾斜 。冥王星的轨道大都脱离了黄道面,倾斜度达17度。上面的图表从一个特定的高于黄道面的透视角显示了各轨道的相对大小及关系(非圆的现象显而易见)。它们绕轨道运动的方向一致(从太阳北极上看是逆时针方向),因此 ,科学家们把冥王星排除在九大行星之外 。除金星和天王星外自转方向也如此。
太阳系直径300亿千米,有八大行星和两条小行星带,以及千亿颗彗星等组成。
太阳系(solar system)在宇宙中的位置
太阳系位于银河系边缘,银河系第三旋臂——猎户旋臂上。
太阳系是由太阳以及在其引力作用下围绕它运转的天体构成的天体系统 。它包括太阳、八大行星及其卫星 、小行星、彗星、流星体以及行星际物质。人类所居住的地球就是太阳系中的一员。
太阳系构成
太阳系的中心是太阳 ,它每隔2.3亿年绕银河系中心转一圈,虽然它只是一颗中小型的恒星,但它的质量已经占据了整个太阳系总质量的99.85%;余下的质量中包括行星与它们的卫星 、行星环 ,还有小行星、彗星、柯伊伯带天体 、外海王星天体、理论中的奥尔特云、行星间的尘埃 、气体和粒子等行星际物质 。整个太阳系所有天体的总表面面积约为17亿平方千米。太阳以自己强大的引力将太阳系中所有的天体紧紧地控制在他自己周围,使它们井然有序地围绕自己旋转。同时,太阳又带着太阳系的全体成员围绕银河系的中心运动 。
太阳系内迄今发现了八颗大行星。有时称它们为“八大行星 ”。按照距离太阳的远近 ,这八颗行星依次是:最近的水星、金星、地球、火星 、木星、土星、天王星 、海王星 。水星、金星、地球和火星也被称为类地行星,木星和土星也被称为巨行星,天王星 、海王星也被称为远日行星。除了水星和金星外 ,其他的行星都有卫星。在火星和木星之间还存在着数十万个大小不等,形态各异的小行星,天文学家将这个区域称为小行星带 。此外 ,太阳系中还有超过1000颗的彗星,以及不计其数的尘埃、冰团、碎块等小天体。
太阳系中的各个天体主要由氢 、氦、氖等气体,冰(水、氨 、甲烷)以及含有铁、硅、镁等元素的岩石构成。类地行星、地球 、月球、火星、木星的部分卫星 、小行星主要由岩石组成;木星和土星主要由氢和氦组成,其核可能是岩石或冰。
起源和演化
一般以为行星系统是恒星形成过程的一部分 ,但是也有学者认为这是两颗恒星差一点撞击而成 。最普遍的理论是说太阳系是从星云形成。
恒星形成的基本过程为此:
1. 星云中较密的核心部分变得太重,重心不稳定,开始分裂和崩溃坠落。一部分的重心能量变为放射的红外线 ,剩下的增加核心的温度 。核心部分开始成为圆盘形状。
2. 当密度和温度道足够高, 氘融合燃烧开始发生,辐射的向外压力减慢(但不中止)临近其他核心崩溃。
3. 其他的原料继续下落到这一颗原恒星 ,它们的角动量的作用可能导致双极流程 。
4. 最后,氢开始熔化在星的核心,外面剩余的包围材料被清除。
太阳星云这个假说 ,是1755年由伊曼努尔·康德提议。他说,太阳星云慢慢地转动,由于重力逐渐凝聚并且铺平 ,最终形成恒星和行星 。一个相似的模型在1796年由拉普拉斯提出。
太阳星云开始直径大约100AU,质量是现在太阳的两三倍。在这个星云中,比较重的物质往中间落,积聚成块 ,是成为以后的行星 。而星云外部越来越冷,因此靠里的行星有很多重的矿物质,而靠外的行星是气体或冰体。原太阳大约在46亿年前形成 ,以后八亿年中各个行星形成。
太阳系运动
太阳系是银河系的一部分。银河系是一个螺旋形星系,直径十万光年,包括两千多亿颗星 。太阳是银河系较典型的恒星 ,离星系中心大约两万五千到两万八千光年。太阳系移动速度约每秒220公里,两亿两千六百万年在星系转一圈。
太阳系中的八大行星都位于差不多同一平面的近圆轨道上运行,朝同一方向绕太阳公转 。除金星以外 ,其他行星的自转方向和公转方向相同。
彗星的绕日公转方向大都相同,多数为椭圆形轨道,一般公转周期比较长。
探索与研究
人类出于对自身生存环境了解的渴望以及日益紧张的地球资源 ,从1959年开始不断的通过空间探测器等进行空间探测,研究太阳系 。目前主要集中在月球和火星的探测以及小行星和彗星的探测。
1.对太阳系的长期研究,分化出了这样几门学科:
太阳系化学
空间化学的一个重要分科,研究太阳系诸天体的化学组成(包括物质来源、元素与同位素丰度)和物理-化学性质以及年代学和化学演化问题。太阳系化学与太阳系起源有密切关系 。
太阳系物理学
研究太阳系的行星、卫星 、小行星、彗星、流星以及行星际物质的物理特性 、化学组成和宇宙环境的学科。
2.太阳系内的引力定律:
太阳系内各天体之间引力相互作用所遵循的规律。
3.太阳系稳定性问题:
天体演化学和天体力学的基本问题之一 。
4.太阳系和其他行星系
虽然学者同意另外还有其他和太阳系相似的天体系统 ,但直到1992年才发现别的行星系。至今已发现几十个行星系,但是详细材料还是很少。这些行星系的发现是依靠多普勒效应,通过观测恒星光谱的周期性变化 ,分析恒星运动速度的变化情况,并据此推断是否有行星存在,并且可以计算行星的质量和轨道。应用这项技术只能发现木星级的大行星 ,像地球大小的行星就找不到了 。
此外,关于类似太阳系的天体系统的研究的另一个目的是探索其他星球上是否也存在着生命。
太阳与行星
太阳与八颗行星数据对照表(赤道直径以地球直径6370公里为单位),距离与轨道半径以天文单位为单位。
下表的数据都是相对于太阳的数值:
--------------------------------------------------------------------------------------------------------------------------------------------------
天体 | 距离(AU) | 赤道直径 | 质量 | 轨道半径(AU) | 轨道倾角(度)| 公转周期(年)|自转周期(天)| 已发现卫星数
--------------------------------------------------------------------------------------------------------------------------------------------------
太阳 0 109 333,400 -- -- -- 27.275 --
--------------------------------------------------------------------------------------------------------------------------------------------------
水星 0.39 0.382 0.05528 0.38710 7.0050 0.240852 58.6 0
--------------------------------------------------------------------------------------------------------------------------------------------------
金星 0.72 0.949 0.82 0.72 3.4 0.615 243.0185(逆向自转) 0
--------------------------------------------------------------------------------------------------------------------------------------------------
地球 1.00 1.00 1.00 1.00 0 1.00 0.9973 1
--------------------------------------------------------------------------------------------------------------------------------------------------
火星 1.5 0.53 0.11 1.52 1.9 1.88 1.0260 2
-------------------------------------------------------------------------------------------------------------------------------------------------
木星 5.2 11.2 318 5.20 1.3 11.86 0.4135 63
-------------------------------------------------------------------------------------------------------------------------------------------------
土星 9.5 9.41 95 9.54 2.5 29.46 0.444 47(有34颗已命名)
-------------------------------------------------------------------------------------------------------------------------------------------------
天王星 19.2 3.98 14.6 19.22 0.8 84.01 0.7183 29
-------------------------------------------------------------------------------------------------------------------------------------------------
海王星 30.1 3.81 17.2 30.06 1.8 164.79 0.6713 13
-------------------------------------------------------------------------------------------------------------------------------------------------
(1)1930年 ,冥王星被国际天文学联合会正式确认为行星,但一些天文学家对其行星的身份仍持怀疑态度 。
(2)根据2006年08月24日国际天文学联合会大会的决议:冥王星被视为是太阳系的“矮行星”、不再被视为行星。
第九大行星
在19世纪末,很多天文学家推测海王星之外还有别的行星 ,因为测试海王星的轨道和理论算出的轨道不一样。他们叫这颗星“行星X”,是未知行星的意思 。
美国天文学家帕西瓦尔·罗威尔在1909年和1913年两次寻找海王星之外的行星,但是没有找到。1915年结束之后,罗威尔发表论文 ,写出估测的行星数据。其实在那一年,他所在的天文台照到了冥王星的照片,但是直到1930年才认出这是一颗行星 。
可是冥王星的质量太小 ,无法解释海王星的轨道。天文学家继续寻找“行星X ”,但是这个名字又有了第十大行星的意思,因为X是拉丁文的10。直到“旅行者2 号”探测器临近海王星 ,才发现海王星的质量一直算错很多 。用正确的质量,加上冥王星的影响,海王星的现实轨道和计算轨道一致。
按照行星轨道计算 ,和地球差不多大小的行星不可能在60AU之内(冥王星现在离太阳大约30AU)。如果确实有第十大行星,它的轨道会很倾斜,很可能是外星系的天体 ,靠太阳太近,而被太阳吸引入轨。
一直以来,天文界对冥王星的地位一直有所争议 。甚至有些地方的天文馆将冥王星从九大行星的地位中剔除。
根据2006年08月24日国际天文学联合会大会的决议:冥王星被视为是太阳系的“矮行星”、不再被视为行星。
自21世纪以来,科学家在冥王星更远的外围分别发现了三颗较大的行星 。依序为2004年所发现的“Sedna” ,代号为 2003 VB12;2005年同时发表的“Santa ”,代号为2003 EL61及代号为2003 UB313(发现者未公布其名称)的行星。
2005年7月19日美国科学家发现的2003 UB313,研究人员估算其直径达3,000公里 ,被一些人认为很可能是太阳系第十大行星。但2006年国际天文学联合大会决议:将其列入矮行星.
“水内行星”
天文学家曾发现离太阳最近的水星有一些无法解释的微小运动,天文学家怀疑可能有一个比水星更靠近太阳的行星的引力引起的,并用一个火神的名字给这个行星起名为“祝融星”(中文常译为“火神星 ”) ,但天文学家们观测了五十多年仍然未找到这颗行星 。
“水内行星”的假设,已被科学家爱因斯坦的广义相对论排除。广义相对论的引力理论解释了水星的奇怪运动,但天文学家们仍未放弃对“水内行星”的探寻。
行星的分类
太阳系内众多包含固态表面 ,而其直径超过1公里的天体,它们的总表面积达17亿平方公里 。
有人认为太阳其实是一个双星系统的主星,在遥远的地方存在着一个伴星 ,名为“涅米西斯 ” (Nemesis)。该假设是用作解释地球出现生物大灭绝的一些规则性,认为其伴星会摄动系内的小行星和彗星,使其改变轨道冲进太阳系,增加撞击地球的机会并出现定期生物灭绝。
行星的形成
类地行星是经由碰撞聚集固态的物质颗粒成为微小行星 ,再聚集微小行星形成的 。
类木行星以水冰相互吸附为起点,质量够大后,进一步吸附氢 、甲烷 ,形成气体行星。
太阳系的行星大致可分为两大类:类地行星与类木行星
类地行星
成员包括有水星、金星、地球、火星。是小而密的岩石世界,具有较稀少的大气。内部结构:中心有金属核心,外为石质的地壳所包围 ,表面有相当多的坑洞,平均密度约为3-5g/cm3 。
巨行星
成员包括有木星 、土星、天王星、海王星。 是体积大 、质量大、但是密度小的气体世界,具有浓密的大气。平均密度约≤1.75 g/cm3 ,土星的密度约为0.7g/cm3,木星 质量约为地球的318倍 。 结构:由内而外,中心有岩石核心、液态金属氢 、液态分子氢、充满气体的大气层 ,表面有漩涡状的云层。另有行星环及为 数众多的卫星环绕著太阳系的八大行星,以太阳为中心依序为:水星(Mercury)、金星(Venus) 、地球(Earth)、火星(Mars)、木星(Jupiter) 、土星(Saturn)、天王星(Uranus)、海王星(Neptune) 。
到底谁是太阳系中最远的行星?
从1999年2月11日开始,冥王星终于变成太阳系中名符其实的最远的行星 。根据JPL天文学家们的计算,从国际标准时(UT)9:08a.m.(中原标准时间17:08)开始的228年内 ,冥王星都会是离太阳最远的行星。
1930年2月18日,Clyde Tombaugh研究Lowell天文台望远镜所拍摄的天空照片时发现了冥王星。冥王星绕日周期为248年,轨道倾角约为17度 ,轨道偏心率约为0.2480 。它主要是由岩石和冰所组成,有四季的变化。冥王星只有一颗卫星,名为查龙(Charon) ,在1978年才发现它的存在。由于冥王星轨道倾角及偏心率都比其他行星大很多,也就是说,冥王星近日点附近的轨道 ,有部份会落在海王星轨道的内侧,所以从1979年2月7日开始到1999年2月11日为止的20年间,冥王星至太阳的距离比海王星还近 。
这样看来 ,2月11日时,冥王星会不会和海王星发生碰撞呢?答案是:不会!为什么呢?冥王星和海王星若要相撞,则两者必须同时到达它们的轨道交点。冥王星和海王星的会合周期大约是497年,即冥王星每绕日二周 ,海王星已绕日三周。所以每当冥王星经过轨道交点的时候,海王星总会绕到别的地方,发生碰撞的机会微乎其微。此外 ,冥王星相对于黄道面的轨道倾角比其他行星都大很多,也是不会发生碰撞的原因之一 。
冥王星的直径大约是2300公里左右,在所有行星中 ,它比类地行星(水、金 、地、火)小很多,甚至比月球还小;它的性质跟巨大且为气态的类木行星(木、土 、天王、海王)不一样;轨道倾角及偏心率也都比其他行星大很多。所以有些天文学家认为冥王星应不属于「行星」一族,而应是归类于「库伯带(Kuiper Belt)」的成员。柯依伯带位于海王星和冥王星轨道外的区域 ,带中的天体都比冥王星小很多,而且大多是由冰所组成,可能是太阳系演化早期的残片 。不过 ,冥王星的外形是成圆球形,与这些库伯带天体多为不规则状又有些许的不同;而且冥王星很规律地绕日旋转,所以,在经过众多争议之后 ,它仍被归为「行星」族。 2006年08月24日国际天文学联合会大会的决议:冥王星被视为是太阳系的“矮行星”,不再被视为行星。
所以我们对冥王星的认识非常有限 。美国太空总署(NASA)下所属的喷射推进实验室(JPL)目前正在进行一个称为「冥王星库伯带(Pluto-Kuiper Express)」的计划,预计在公元2004年发射太空船 ,大约再10年之后,太空船就会飞掠冥王星和查龙,并探测库伯带中的天体。
根据2006年08月24日国际天文学联合会大会的决议:冥王星被视为是太阳系的“矮行星” ,不再被视为行星。从这一天起,冥王星不再是太阳系中最远的行星,海王星代替了它的地位 。
关于“有关太阳系的资料 ”这个话题的介绍 ,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[问雁]投稿,不代表大雨号立场,如若转载,请注明出处:https://dairy6767.cn/sygl/202509-55307.html
评论列表(4条)
我是大雨号的签约作者“问雁”!
希望本篇文章《2分钟科普“嘟咪互动有挂吗(怎么提高胜率)》能对你有所帮助!
本站[大雨号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:熟悉规则:首先,你需要熟悉微乐麻将的游戏规则,...